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An infinite series of surprises

by C.J. Sangwin

Introduction

An infinite sum of the form

(1)

is known as an infinite series. Such series appear in many areas of modern mathematics. Much of this topic
was developed during the seventeenth century. Leonhard Euler continued this study and in the process solved
many important problems. In this article we will explain Eulerâ€™s argument involving one of the most
surprising series.

You are likely to have already met perhaps the most important series which is the geometric progression.
Given constants  and  we want to sum

(2)

If  we can make sense of the infinite sum â€“ something known by Newton â€“ which is

(3)
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This was one of the first, and only, general results known during the seventeenth century. Another series then
known was

(4)

(5)

(6)

(7)

Similar methods were used to find the sums

(8)

Now all these series converge. That is to say we can make sense of the infinite sum as a finite number. This is
not true of a particularly famous series which is known as the harmonic series:

(9)

The following medieval proof that the harmonic series diverges was discovered and published by a French
monk called Orseme around 1350 and relies on grouping the terms in the series as follows:

(10)

(11)

(12)
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The harmonic series diverges

It follows that the sum can be made as large as we please by taking enough terms. In fact this series diverges
quite slowly. A more accurate estimate of the speed of divergence can be made using the following more
modern proof. This uses a technique known as the integral test which compares the graph of a function with
the terms of the series. By integrating the function using calculus we can compare the sum of the series with
the integral of the function and draw conclusions from this.

In this case we compare terms in the series with the area under the graph of the function . In
particular, figure 1 shows that

(13)

Figure 1: The series 1/n above the graph of 1/(1+x)

Of course the integral on the right is easy. Solving this gives
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(14)

Now, the function  is unbounded. By this we mean that there is no limit to how big we can make it
by taking sufficiently large values of . So we can make  as large as we please. A similar argument
comparing the series to the function  shows that

(15)

so that we can estimate how fast the series diverges.

Figure 2: The series 1/n below the graph of 1/(1+x)

The harmonic series generalized

The mathematician Bernoulli

The harmonic series can be described as "the sum of the reciprocals of the natural numbers". Another series
that presents itself as being similar is the "the sum of the squares of reciprocals of the natural numbers". That
is to say, the series

(16)
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The first question we ask is "Does this series converge?". If it does we next ask "What is the sum?". To
answer the first question we notice that

(17)

and so

(18)

and comparing with terms in the series (4) that we encountered earlier gives that

(19)

Bust of Leibniz by Johann Gottfried Schmidt

The series converges, but the exact value of the sum proves hard to find. Jakob Bernoulli considered it and
failed to find it. So did Mengoli and Leibniz. Finding the sum became known as the Basel Problem and we
concentrate on Euler's solution for the rest of this article.

"Infinite polynomial" − power series

Before solving this problem we look briefly at a piece of theory Euler used which allowed him to write the
function  in a particular way. This really could (or perhaps should) be the subject of an article in its own
right.

What Euler knew, as as we will see in a moment, is that  can be written as an " infinite polynomial" in
the following way:

(20)

This is called a power series for  because it is a series in terms of powers of . You may be aware that
you can approximate  when  is small. This just uses the first term in the series above. You can
get better approximations to  as
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(21)

and

(22)

by taking successive terms. Most other functions, such as  etc. have power series. It is
series such as these that your pocket calculator uses to calculate numerical values.

In formula (20)  is in radians not degrees and it would not be nearly so beautiful if  was an angle in
degrees. In fact, one of the reasons we choose to use radians is because this allows us to write the formula in
this way.

Euler's solution to the Basel Problem

Leonhard Euler

Euler was working on the Basel Problem at the age of 24 in 1731 by calculating a numerical approximation.
This is an arduous task by hand with a series which converges as slowly as this. In 1735 he arrived at the
following exact result:

(23)

This is a truly remarkable result. No one expected the value , the ratio of the circumference of a circle to the
diameter, to appear in the formula for the sum.

Euler starts with an th degree polynomial  with the following properties:

 has non−zero roots ,1. 
.2. 

Then  may be written as a product in the following form:

An infinite series of surprises

Euler's solution to the Basel Problem 6



(24)

We paraphrase Eulerâ€™s next claim as "what holds for a finite polynomial holds for an infinite polynomial".
He applies this claim to the polynomial

(25)

which is an infinite polynomial with . Furthermore, as Euler knew,  can be written as a series:

(26)

Multiplying  by  he obtained

(27)

This has zeros at  for  since these are the zeros of . We can now use the claim
above and write  as an infinite product and equate the two as

(28)

(29)

(30)

The second line pairs the positive and negative roots â€“ the last line uses the difference of two squares to
combine these. If you donâ€™t believe this can be done you are right to question the logic here! Euler is
being incredibly bold in his assertion that "what holds for a finite polynomial holds for an infinite
polynomial". His use turns out to give the correct answer in this case!

Eulerâ€™s trick is to write  in two different ways. He exploits this by expanding the right hand side. This
infinite product will be very complicated but there will be a constant term  and one can collect the  term
without too much effort as follows:

(31)

Now Euler equates the coefficients of  to conclude that

(32)
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which gives

(33)

Now Euler didnâ€™t stop here â€“ he expanded the product further and equated other coefficients to sum
other series. In this way he obtained

(34)

In 1744 he obtained

(35)

by this method. In principle his method solves

(36)

for all natural numbers .

Extensions of the Basel problem

In a style typical of Euler, he not only solved the problem in hand but also used the method to solve a class of
related problems. You will notice that his method only works for even powers. What then, about

(37)

The answer is: we donâ€™t know. This is still an open problem, and quite a famous one. Euler tried to solve it
of course, but failed. The best he could do was

(38)

Further reading

You can find out more about some on Euler's work on infinite series (including a derivation of the last result)
in his paper Remarques sur un beau rapport entre les series des puissances tant directes que reciproques.
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